Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
PLoS One ; 17(5): e0268327, 2022.
Article in English | MEDLINE | ID: covidwho-1910643

ABSTRACT

We present a workflow for clinical data analysis that relies on Bayesian Structure Learning (BSL), an unsupervised learning approach, robust to noise and biases, that allows to incorporate prior medical knowledge into the learning process and that provides explainable results in the form of a graph showing the causal connections among the analyzed features. The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL, to the realization of a tool suitable for clinical practice, based on a Binary Decision Tree (BDT), to recognize patients at high-risk with information available already at hospital admission time. We evaluate our approach on a feature-rich dataset of Coronavirus disease (COVID-19), showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome. We compare our findings with current literature on COVID-19, showing that this approach allows to re-discover established cause-effect relationships about the disease. Further, our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features: age, a previous history of chronic obstructive pulmonary disease and the PaO2/FiO2 ratio at the time of arrival to the hospital. The inclusion of additional information from 4 routine blood tests (Creatinine, Glucose, pO2 and Sodium) increases predictive accuracy to 94.5%.


Subject(s)
COVID-19 , Bayes Theorem , Causality , Hospitalization , Humans
2.
Intelligenza Artificiale ; 13(2):45-53, 2022.
Article in English | Academic Search Complete | ID: covidwho-1775625

ABSTRACT

The COVID-19 pandemic has influenced our lives significantly since March 2020, and a number of initiatives have been put forward in order to tackle its effects, including those focused on technological solutions. In this paper, we present one of such initiatives, i.e. the CLAIRE's taskforce on AI and COVID-19, in which Artificial Intelligence methodologies and tools are being developed to help the society contrasting the pandemic. We present the different lines of development within the taskforce, some fields in which they are used, and draw few recommendations. [ FROM AUTHOR] Copyright of Intelligenza Artificiale is the property of IOS Press and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

3.
Ethics Inf Technol ; : 1-7, 2021 Feb 09.
Article in English | MEDLINE | ID: covidwho-1080831

ABSTRACT

A volunteer effort by Artificial Intelligence (AI) researchers has shown it can deliver significant research outcomes rapidly to help tackle COVID-19. Within two months, CLAIRE's self-organising volunteers delivered the World's first comprehensive curated repository of COVID-19-related datasets useful for drug-repurposing, drafted review papers on the role CT/X-ray scan analysis and robotics could play, and progressed research in other areas. Given the pace required and nature of voluntary efforts, the teams faced a number of challenges. These offer insights in how better to prepare for future volunteer scientific efforts and large scale, data-dependent AI collaborations in general. We offer seven recommendations on how to best leverage such efforts and collaborations in the context of managing future crises.

SELECTION OF CITATIONS
SEARCH DETAIL